Article 10415

Title of the article

AN ANALOG-TO-DIGITAL IMMITANCE CONVERTER FOR A UNIFORM CHANNEL OF INFORMATION-MEASURING AND CONTROL SYSTEMS 

Authors

Ashanin Vasiliy Nikolaevich, Candidate of engineering sciences, professor, head of sub-department of electrical power and electrical engineering, Penza State University (40 Krasnaya street, Penza, Russia), eltech@pnzgu.ru
Baranov Viktor Alekseevich, Candidate of engineering sciences, associate professor, sub-department of informationmeasuring technology and metrology, Penza State University (40 Krasnaya street, Penza, Russia), baranov_va2202@mail.ru
Lomtev Evgeniy Aleksandrovich, Doctor of engineering sciences, professor, sub-department of information-measuring technology and metrology, Penza State University (40 Krasnayа street, Penza, Russia), iit@pnzgu.ru
Tsypin Boris Vul'fovich, Doctor of engineering sciences, professor, sub-department of space-rocket and aircraft instrument engineering, Penza State University (40 Krasnayа street, Penza, Russia), cypin@yandex.ru

Index UDK

621.3.098.2

Abstract

Background. In development of information and measurement and control systems there often occur problems of determining properties of material objects, in particular, dielectric, magnetic, electrochemical, biological objects. The most informative characteristic of such objects is immitance (impedance or conductivity), which reflects object’s reaction on the harmonic electric effect. Immitance expressed in terms of quite a few of parameters which are functionally related to the parameters of measured (controlled) object. A special measuring channel of a system must be developed to measure each parameter of an object. The purpose of the work is to develope a unified information channel of measurement and control systems to measure various parameters of immitance of a measured object or of a controlled object.
Materials and methods. The research was performed using the methods of simulation through the analysis and synthesis of a mathematical model of an electrical object and a structural model of a channel of information-measuring and control systems.
Results. The combined model was developed, which embraced the electrical model and the mathematical model of the object as a set of equations. Those equations link components of the complex impedance of the object and its required parameters. A block diagram of the unified channel for measurement of parameters of
the measured object (controlled object) was synthesized. The unified channel consists of a measuring circuit, an analog-digital converter (ADC) of immitance and a channel computing device. The immitance ADC consists of ADC voltage, ADC phase shift, ADC temperature, a digital - analog converter for generating harmonic voltage and a computing device.
Conclusions. The usage of the combined model of an object instead of a model in the form of a multi-element linear electrical circuit significantly expands the scope of immitance measurement in science and technology, as it opens a possibility of measuring parameters of non-linear objects and objects with immitance, which depends on temperature. The proposed structure of the immitance ADC can be realized by the integrated or hybrid technology. This will standardize hardware of measuring channels of measurement and control systems. A sigma-delta architecture of ADC has the highest linearity of conversion function and can be completely implemented by the integrated technology. This is the reason why this architecture should be used as a basis for design of voltage ADC and phase shift ADC.

Key words

analog-to-digital converter, information-measuring system, control system, immitance, immitance measurement, digital signal processing, sigma-delta architecture.

Download PDF
References

1. Martyashin A. I., Shakhov E. K., Shlyandin V. M. Preobrazovateli elektricheskikh parametrov dlya sistem kontrolya i izmereniya [An electrical parameters converter for measuring and control systems]. Moscow: Energiya, 1976, 392 p.
2. Kneller V. Yu., Borovskikh L. P. Opredelenie parametrov mnogoelementnykh dvukhpolyusnikov [Determination of parameters of multi-element two-terminal devices]. Moscow: Energoatomizdat, 1986, 144 p.
3. Novikov A. M., Novikov D. A. Metodologiya [Methodology]. Moscow: SIN-TEG, 2007, 668 p.
4. Tsypin B. V., Martyashin A. I. Metody diagnostiki i izmeritel'nye preobrazovateli dlya priborov i sistem kontrolya uzlov elektronnoy apparatury: ucheb. posobie [Diagnostics and measuring converters for electronic equipment’s node control systems and devices]. Penza: Izd-vo PPI, 1989, 80 p.
5. Martyashin A. I., Orlova L. V., Tsypin B. V. Metody poelementnogo kontrolya elektronnykh skhem: Obzornaya informatsiya [Methods of element-by-element check of electronic systems]. Issue. 1. Moscow: TsNIITEI priborostroeniya, 1983, 32 p. (Seriya TS-5. Pribory, sredstva avtomatizatsii i sistemy upravleniya).
6. Akhadov Ya. Yu. Dielektricheskie parametry chistykh zhidkostey [Dielectric parameters of pure liquids]. Moscow: Izd-vo MAI, 1999, 856 p.
7. Available at: http://www.abc.chemistry.bsu.by/ vi/analyser/ parameters.html.
8. Baranov V. A. Izmereniya parametrov kompozitsionnykh dielektricheskikh materialov [Measuring of composite dielectric material parameters]. Penza: Inf.-izd. tsentr PenzGU, 2008, 124 p.
9. Dobrovinskiy I. R., Lomtev E. A. Proektirovanie IIS dlya izmereniya parametrov elektricheskikh tsepey [Designing information-measuring systems for electrical circuit parameters measuring]. Moscow: Energoatomizdat, 1997, 120 p.
10. Tsypin B. V. Izmerenie impedansov sistemami s EVM [Impedance measuring by computer systems]. Penza: PGU, 2001, 100 p.
11. Ashanin V. N. Datchiki i sistemy [Sensors and systems]. 2011, no. 7, pp. 2–7.
12. Ashanin V. N., Chuvykin B. V., Shakhov E. K. ΣΔ-analogo-tsifrovye preobrazovateli: osnovy teorii i proektirovanie: monogr. [ΣΔ-analog-digital converters: theory and design: monograph]. Penza: Inf.-izd. tsentr PenGU, 2009, 188 p.
13. Ashanin V. N., Chuvykin B. V., Korotkov A. A., Sidorova I. A. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Tekhnicheskie nauki [University proceedings. Volga region. Engineering sciences]. 2014, no. 1 (29), pp. 26–35.
14. Ashanin V. N., Chuvykin B. V., Ter-Arakelyan R. G. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Tekhnicheskie nauki [University proceedings. Volga region. Engineering sciences]. 2010, no. 3 (15), pp. 70–81.
15. Shakhov E. K., Ashanin V. N., Nadeev A. I. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Cer. Tekhnicheskie nauki [University proceedings. Volga region. Ser. Engineering sciences]. 2006, no. 6, pp. 226–236.
16. Ashanin V. N., Chuvykin B. V., Shakhov E. K. Teoriya integriruyushchego analogotsifrovogo preobrazovaniya: monogr. [Theory of integrating analog-digital conversion: monograph]. Penza: Inf.-izd. tsentr PenzGU, 2009, 214 p.

 

Дата создания: 12.05.2016 11:37
Дата обновления: 12.05.2016 13:47